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Agenda 

1. Now 

– Where we are 

 

2. The recent past 

– How did we get there 

 

3. The end of Moore’s Law 

– Can we just go on as before 

 

4. Alternatives 

– Where else could we be 

 

5. The Future 

– Where might we go 

 

 



Now 
The best of times or 
the worst of times ? 
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Top500, November 2017 
Processors 



       | 04-june-2018 | Romain Dolbeau | © Atos - Confidential  
BDS | HPC | CEPP | may not be reproduced, distributed  or used in any manner without permission  

Top500, November 2017 
Accelerators (~20% of systems) 
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Top500, November 2017 
Observations 

▶ The top500 seems a very boring list… 

▶ Intel Xeon dominate the CPU landscape 

▶ Nvidia GPU dominate the ~20% of accelerated systems 

 

▶ It seems the current era of HPC is the triumph of conformity ! 

 

▶ But what if we look at the details ? 

 

▶ But first a one-question quiz for the audience: 

– When was the last time the all-powerful Intel 
got #1 at the top500 with a pure CPU system ? 

• That is Intel CPUs, no accelerators (not even Phi) 

 

– ASCI Red in from 1997/11 to 2000/06 … 
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Is the era of the general-purpose CPU over? 

▶ For a couple of decades, general-purpose CPU have ruled the landscape of HPC 
in volume 

– Since the move from vector machines & dedicated massively parallel systems 

• Cray vector systems, NEC SX, … 

• Thinking Machines Connection Machine, … 

▶ The advent of GPGPU computing during the past decade was the first breach of 
the GPCPU monopoly in volume 

▶ The Top500 is usually led by highly specific systems: 

– 2008: Roadrunner #1: GPCPU + Accelerator IBM PowerXCell 

– 2009: Jaguar #1: GPCPU – AMD Opteron 

– 2010: Tianhe-1A #1: GPCPU + GPU – Intel + Nvidia 

– 2011: K computer #1: GPCPU – Fujitsu SPARC 

– 2012/06: Sequoia #1: GPCPU – IBM BlueGene/Q 

– 2012/11: Titan #1: GPCPU + GPU – Intel + Nvidia 

– 2013: Tianhe-2: CPU + Accelerator – Intel + Intel Phi 

– since 2016: TaihuLight : Specific CPU - Sunway 
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Is the era of the general-purpose CPU over? 

▶ As of November 2017, about 1-in-5 systems of the Top500 are accelerated 

– NVidia Tesla of various generations 

– Intel Xeon Phi 

– PEZY-SCnp 

– AMD FirePro of various generations 

▶ GPCPU still endures in the volume business by their comparative ease-of-use 

– Programmability is key 

▶ But even major GPCPU vendors are moving toward more complex programming 
using large vectors 

– Intel AVX-512 

– ARM Scalable Vector Extensions 

▶ Small cores or big cores ? 

▶ Specific CPU and accelerators are leaders in Performance/Watts 

– Deep Learning is pushing toward highly specific silicon 
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The recent past 
we had everything before us, 
we had nothing before us 
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Intel x86-64: From “NetBurst” to “Skylake”, 
timeline (1: before Nehalem) 

▶ The Intel “Nocona” Xeon was introduced in June 2004, and was the first Intel server CPU 
featuring EM64T, a.k.a. AMD64, a.k.a. x86-64 

– Based on the “NetBurst” microarchitecture introduced with the Pentium 4 

– 64 bits registers, 64 bits pointer, and vector extension up to SSE3 

– 90 nm, single core, from 2.8 GHz to 3.6 GHz 

– Replaced in May 2006 by the dual-core, 65 nm “Dempsey” (Xeon 50xx), which 
introduced VT-x (virtualization support) 

 

▶ The Intel “Woodcrest” Xeon (51xx) was introduced in June 2006 

– Based on the “Core” microarchitecture 

– Added SSSE3 

– 65 nm, dual core, from 1.6 GHz to 3 GHz (and quad-core “Clovertown”, 53xx) 

 

▶ The Intel “Wolfdale-DP” Xeon (52xx) was introduced in November 2007 

– 45 nm shrink of “Core” (a.k.a. Penryn) 

– Added SSE4.1 

– Dual-core, 1.86 to 3.4 GHz (and quad-core “Harpertown”, 54xx) 
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Intel x86-64: From “NetBurst” to “Skylake”, 
timeline (2: before Haswell) 

▶ The Intel “Gainestown” Xeon (55xx) was introduced in January 2009 

– Based on the “Nehalem” microarchitecture 

– Memory controller integrated in the CPU instead of the chipset 

• No more shared “Front Side Bus” 

• “NUMA” design 

• Pioneered by AMD with the Opteron family, like AMD64 

– QPI for inter-socket communications 

– Three-level cache hierarchy with shared LLC (a.k.a. shared L3) 

– Added SSE4.2, I/O virtualization (VT-d, VT-c), … 

– 45 nm, quad-core, up to 3,6 GHz 

– 32 nm shrink as “Westmere” (56xx), adding AES, with up to 6 cores 

 

▶ The Intel “Sandy Bridge-EP” (E5-26xx) was introduced in March 2012 

– Based one the “Sandy Bridge” microarchitecture 

– Added AVX (doubling the vector register size) 

– 32 nm, up to 8 cores, up to 3 GHz + Turbo 

– 22 nm shrink as “Ivy Bridge” (E5-26xx v2) with up to 12 cores 
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Intel x86-64: From “NetBurst” to “Skylake”, 
timeline (3: before Skylake) 

▶ The Intel “Haswell-EP” Xeon (E5-26xx v3) was introduced in September 2014 

– Based on the “Haswell” microarchitecture 

– Added AVX2 and FMA (Fused Multiply-Add) and BMI 

– Introduced the “AVX clock rate” (lower than nominal) 

– 22 nm, up to 18 cores, up to 3.7 GHz 

– 14 nm shrink as “Broadwell” (E5-26xx v4), with up to 22 cores and faster FMA, ADX 

▶ “Broadwell” is  the current “normal” Xeon range 

– Until “Skylake” is officially introduced 

 

▶ The Intel “Knights Landing” Xeon (Phi 72xx) was introduced in June 2016 

– Based on the “many core” (MIC) “Knights Landing” microarchitecture 

– Derived from the “Atom” range of cores, very different (“small”) cores 

– Supports all instruction sets from “Broadwell” except transactional memory 

– Added AVX512F, AVX512CD, AVX512ER, AVX512PF (double vector register width, again) 

– 14 nm, up to 72 cores, up to 1.4 GHz 
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Intel x86-64: From “NetBurst” to “Skylake”, 
timeline (4: current) 

▶ The Intel “Skylake” Xeon (Xeon Scalable) was introduced in July 2017 

– Quite different from the already available “consumer” “Skylake” 

– Server “Skylake” … 

• Supports AVX512F, AVX512CD 

– But not AVX512ER, AVX512PF 

• Introduces AVX512BW, AVX512DQ, AVX512VL 

• Has a different cache hierarchy 

– Non-inclusive, smaller L3 

– Larger L2 

– First major change 
 since “Nehalem” 

• Uses UPI for inter-socket 
communications 

– Replace QPI 

– First major change 
 since “Nehalem” 
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Intel x86-64: From “NetBurst” to “Skylake” 

▶ A long lineage of “big core” 

– Single-thread performance is excellent 

 

▶ Ever-growing number of cores 

– From 4 in Nehalem to up to 28 in Skylake 

 

▶ Ever-growing memory bandwidth 

– From 32 GB/s per socket in Nehalem to 128 GB/s in Skylake 

• Twice the channels at twice the frequency 

 

▶ Ever growing performance ! 

 

▶ So… what’s the worry ? 
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The End of Moore’s Law 
Spring of hope or 
winter of despair ? 
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           The end of the Moore’s law 
           and the HPC applications 

The « laws » 

 
▶ The laws that struggle 

– The Moore’s law: transistors density 

– The Dennard’s law (1974): constant energy density 

– The Kryder’s law: observes that storage density of 
magnetic disks increased faster than chip density 

▶ The laws that carry on 

– The Rock’s law: the price of a semiconductor chip 
plant doubles every four years 

– The Amdahl’s law about speedup 

– The Gustafson’s law about « weak scaling » 
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The end of Dennard Scaling 

                   Parameter 

            (scale factor = a) 

Classic 

Scaling 

Current 

Scaling 

Dimensions 1/a 1/a 

Voltage 1/a 1 

Current 1/a 1/a 

Capacitance 1/a >1/a 

Power/Circuit 1/a2 1/a 

Power Density 1 a 

Delay/Circuit 1/a ~1 

Source: Krisztián Flautner “From niche to mainstream: can critical systems 

make the transition?” 
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Everything was easy: 

• Wait for the next 

technology node 

• Increase frequency 

• Decrease Vdd  

 Similar increase of 

sequential 

performance 

 No need to recompile 

(except if 

architectural 

improvements) 
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What is peak performance ? 

Fused Multiply-Add = 2 

Vector ; CPU = 2-8, GPU >= 512 

Superscalar Pipelines ; 1-2 

Frequency ; 1-5 GHz 

Multi/Many Cores ; few - dozens 

Clustering ; several thousands 
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The end of Moore’s Law (1) 

▶ It’s getting harder and more expensive to cram billions of 
transistors in a chip 

 

▶ Moving data around is a bigger problem than ever 

– There’s more of it, and we compute much faster 

 

▶ Every transistor spent on making the CPU faster at single-thread 
is not available for computation 

– Out-of-order execution 

– Branch prediction 

– Wide-issue 

– … 
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The end of Moore’s Law (2) 

▶ If the HPC community wants more FLOPs … 

 

1. New and future hardware will be harder to leverage 

– Less transistors available to help the programmer 

– More transistors for pure compute 

 

2. Need to tune more and more the low-level parts to the 
underlying hardware 

– Otherwise, little gain from newer hardware 

 

▶ True for GPCPU, GPGPU, Accelerators, dedicated hardware, … 

21 



The alternatives 
epoch of belief or 
epoch of incredulity ? 

22 
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Many players in the market 

▶ From CPU to various accelerators, many players are trying to redefine 
the HPC landscape 

▶ On the conventional CPU side of things 

– AMD makes an Epyc comeback 

• (too easy, I know) 

– ARM is pushing hard in the HPC market 

– ARM licensees are starting to take position 

• Well – Cavium is… 

– The Europeans might finally show up at the party 

• “European Processor Initiative”, EPI, still in infancy 

▶ On the more “exotic” side of things 

– Big Chinese player like Sunway 

– Many smaller player with high-efficiency dedicated hardware 
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▶ Taped-out (09/16) Adapteva Epiphany V announce 75 DP Gflops/watt  

– Actual silicon still 4-6 months later ? 

– DARPA research project … 

▶ 1024 cores !  

▶ Can be connected as a chip-level grid to get millions of cores… 

▶ But programming model identical to the previous Epiphany III 

– No MMU or any advanced feature – no OS, accelerator only 

– Local memory is 64 KiB per core 

• 32 KiB for EpiIII, shared between code and data… 

• But very fast – size and performance of a L1 cache 

– Access to main memory of 

    questionable performance 

    in the reference board 

 

▶ Exascale efficiency… 

▶ Also Exascale complexity? 
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Epiphany-V: 75 DP Gflops/watt ! 
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▶ The Sunway TaihuLight is leader of the Top500 since June 2016 

▶ Many cores 

– 260 cores per node – 4 times 64+1 

– Main core of each group of 65 is a “real” core, with OS support & caches 

– Other 64 are “compute” core, with 64 KiB of scratchpad memory 

• No caches 

• Similar to Epiphany, or the per-multiprocessor “shared”  memory in GPU 

– Only 1.45 GHz, only 8 flop/cycle 

▶ Not a lot of memory, only 32 GiB / node 

 

▶ Programming models 

   include OpenCL & OpenACC 

– The 64 cores are really 

    accelerators, not GPCPU 

 

▶ As of 2018, a desktop 
version is announced in China 
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At-scale example: Sunway TaihuLight 



       | 04-june-2018 | Romain Dolbeau | © Atos - Confidential  
BDS | HPC | CEPP | may not be reproduced, distributed  or used in any manner without permission  

Pure HPC acclerator: PEZY-SC 

▶ 2 ARM926 controller 
cores 

▶ 1024 compute RISC 
cores 

▶ PCIe Gen2 (SC) or 
Gen3 (SCnp) 
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REX Neo: another future player 

▶ “256 GFLOPs (Double Precision) or 512 GFLOPs (Single Precision) at 64 to 128 
GFLOPs/watt” (from rexcomputing.com) 

▶ Pretty much the same global schematic as the Epiphany… 

– Or previously the Tilera chips 

– Also similar to the KalRay design 

– Or some aspect of Skylake 

– … 

▶ Also a DARPA project … 

 

 

 

 

 

 

▶ … posit in the second version? 
http://web.stanford.edu/class/ee380/Abstracts/170201-slides.pdf 
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▶ To reach Exascale, Flop/Watt will be key 

▶ GPCPU is easy to use, but grossly inefficient in terms of power usage 

▶ HPCCPU such as Intel Knights Landing are more power-efficient 

– Less than even more specific hardware 

– But easier to use than more specific hardware 

▶ GPGPU is even more power-efficient 

– But still less than really dedicated hardware 

– And still easier than really dedicated hardware… 

 

▶ TaihuLight is #3 at 

    the Green500, about 

    10% less efficient than #1 

▶ #1 & #2 in Green500 

   are using PEZY-SCnp 

   accelerators 
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GPCPU, accelerators or specific CPU ? 

Credit: Andreas 
Olofsson,  “Epiphany-
V: A 1024 processor 
64-bit RISC System-
On-Chip” 

optimistic 
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Chips & technology 
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Credit: Andreas 
Olofsson,  “Epiphany-
V: A 1024 processor 
64-bit RISC System-
On-Chip” 

optimistic 
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Knights Landing / Xeon Phi 72xx, a HPCCPU (1) 

+ Wider vector with AVX-512 

– Up to 8 DP or 16 SP elements in a vector 

+ More cores 

– Up to 72 cores per socket (64 or 68 initially) 

+ MCDRAM 

– Up to 16 GB of high-bandwidth memory on-socket 

- Lower frequency compared to Haswell / Broadwell 

- Only one socket per system 

- Simpler/smaller core: narrower issue, less out-of-order capabilities, … 

 

▶ Broadwell node 

– Dual E5 2680v4 nom. freq. : 2 * 4 * 2 * 2.4 * 14 * 2 = 1075,2 DP GFlop/s 

– Dual E5 2680v4 AVX freq. : 2 * 4 * 2 * 2.1 * 14 * 2 = 940.8 DP GFlop/s 

▶ Knights Landing node 

– 7250 nom. freq. : 2 * 8 * 2 * 1.4 * 68 * 1 = 3046.4 GFlop/s 

– 7250 AVX freq. : 2 * 8 * 2 * 1.2 * 68 * 1 = 2611.2 GFlop/s 
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Knights Landing / Xeon Phi 72xx, a HPCCPU (2) 

- Is more dependent on vectorization than Haswell/Broadwell 

+ The penalties of not vectorizing are lower than for GPU 

 

- Single-thread performance is lower than Haswell/Broadwell 

+ Single-thread performance is higher than SW26010 (TaihuLight) let alone 
Epiphany 5 

 

+ Tools are shared with previous Intel CPUs 

 

+ Previous libraries can be directly re-used, even if not yet optimized 

• Exotic hardware needs all required libraries ported before becoming usable 

 

+ Many optimizations for Knights Landing are also useful on regular Xeons 

 

• Most of the analysis, and some of the porting effort, of codes will be re-usable in 
future architecture 

31 
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Volta V100, GPGPU for HPC 

▶ The Volta-based Tesla V100 is very HPC-oriented 

▶ V100 is a massively parallel, cache-coherent, GPU-like HPC device 

– No longer simply leveraging consumer offering 

– The previous Pascal P100 was already a mostly HPC design, different from 
P40 and the GeForce devices 

▶ V100 is even more versatile than the P100 was 

– Less tightly coupled CUDA threads 

– Better caching 

– Overall, gives better performance than P100 with less effort 

• Easier to get good performance from pure OpenACC code, for instance 

 

▶ NVlink interconnect allows for much better cooperation between V100 devices 

– But requires the new SXM2 form factor and specially designed host systems 

– PCI express card are lower clocked and can’t efficiently use Nvlink 

– NVlink also allows for a shared memory space between CPU and GPU with 
IBM POWER9 
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ARM, a choice for “small cores” ? (1) 

▶ Going back to the “peak” formula, the idea of “small cores” is simply to 

1. Use simpler/smaller cores even if they have lower peak 

2. Use more of them to create the peak performance 

 

▶ ARM is a runaway success in the mobile world, powering most of phones (dumb, 
smart and feature alike) and tablets and even “phablets” 

– And set-top boxes and other no-so-mobile devices 

– And very small cores for IoT 

– Also in the small computer market with Android-based laptops 

▶ But NEON is very limited in scope (only 128 bits registers, no easy masking, 
similar to SSE in many respect) and implementations (A57 can only do 4 DP 
Flops/cycle) 

▶ Is Scalable Vector Extension the answer? 

– Imagine a not-so-big core with 512 bits, maskable vector, and use plenty of 
them… 

– ... does that remind you of anything? 

33 



       | 04-june-2018 | Romain Dolbeau | © Atos - Confidential  
BDS | HPC | CEPP | may not be reproduced, distributed  or used in any manner without permission  

ARM, a choice for “small cores” ? (2) 

▶ Knights Landing use such an approach 

– Smaller cores based on the Atom range 

– Retain very wide vectors to keep up a high theoretical peak per core 

▶ Theoretical peak is *very* high 

– 2.5-3 Tflops / socket 

 

▶ SVE-based ARM systems likely to need similar effort to use efficiently 

1. Proper exploitation of vector capability 

2. Minimizing sequential parts that are even costlier on smaller cores 

 

▶ KNL frequency, like Haswell and Broadwell, gets lower when intensely using the 
FMA capabilities… 

– So does Skylake… 

– Power usage + thermal dissipation are limiting factor 

 

▶ Will ARM retain its power advantage after adding power-hungry operators? 

34 
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POWER8 & 9: big cores ! 

▶ POWER8 is up to 12 cores at up to 5 GHz 

▶ Wide issues, up to 8 instructions per cycle 

– And up to 8 threads per core to help saturate the pipelines 

▶ “Only” 8 Flops per cycle 

– 4 FMA per cycle 

– Support SIMD but isn’t entirely reliant on it 
 for performance 

– Very high per-thread performance 

▶ Quite power-hungry: the 10 cores, 2.92 GHz 
 nominal (3.5 GHz Turbo) POWER8 has 
 a TDP of 190W 

– … for 233.6 GFlops nominal 

 

▶ POWER9 pushes to 12 SMT8 cores or 24 SMT4 
 cores at 4 GHz 

– So both 96 execution threads 

35 
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AMD “Naples” / Epyc: semi-big ? (1) 

▶ The server processor from AMD codename “Naples”, sold as “Epyc” 

 

▶ Based on the “Zen” microarchitecture 

– Released March 2017 with the “Ryzen”-branded consumer CPU 

 

▶ Each Epyc is build from 4 dies (chips) in a multi-chip module 

– Believed to be more cost-effective than a large monolithic die by AMD 

 

▶ Only has half the Flops/cycle of “Haswell”/”Broadwell” 

– Only 128 bits-wide pipeline, 
 4 of them (2 ADD, 2 MUL) 

– So ¼ of KNL or SKX… 

 

▶ Clearly not “big” from a FLOPs point-of-view ! 

 

▶ But … 

36 
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AMD “Naples” / Epyc: semi-big ? (2) 

▶ It has more cores per socket than all the conventional Xeon 

– Up to 32 cores per socket, at 2.2 GHz nominal for the Epyc 7601 

 

▶ More bandwidth per socket than HSW/BDW/SKX/KNL 

– 8 channels per socket, vs. 4/4/6/6 

 

▶ More private L2 cache per core than HSW/BDW 

– 512 KiB vs. 256 KiB 

– Less than SKX which has 1 MiB/core 

 

▶ Slightly less shared L3 cache per core than HSW/BDW 

– 2 MiB vs. 2.5 MiB 

– More than SKC with has 1.375 MiB/core 

 

▶ Excellent single-thread performance for non-AVX workload 
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▶ “Field-Programmable Gate Array” 

 

▶ A bunch of silicon gates that can be reconfigured in the field 

– As an array of basic “logic block”, typically with LUT (look-up table), adder, 
flip-flop, … and some embedded memory cells 

 

▶ Allows almost any algorithms/functions to be implemented “in silico” 

 

▶ Can offer very low-latency and very high performance for specialized use 

 

▶ Widely used for hardware simulation, for signal processing, for ultra low latency 
applications (High Frequency Trading, …), … 

 

▶ Commonly independent chips, now also available with “hard” core 

– i.e. Xilinx Zynq 7xxx (Cortex A9 + FPGA) or Zynq UltraScale (A53  + FPGA) 

– Intel has bought FPGA manufacturer Altera, and has announced Skylake + 
FPGA 

38 

FPGA: algorithms in hardware (1) 
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FPGA: algorithms in hardware (2) 

▶ But some drawbacks… 

– Originally required programming in Hardware Description Language (HDL) 
such as VHDL or Verilog, very different from C let alone Fortran or C++ 

– Suppliers now offers higher level tools (for C, OpenCL, …) but at a potential 
performance cost 

• Overhead from the abstraction layers 

– Reconfiguring the device takes time, so to implement more than one 
algorithm… 

• Static partitioning: algorithms are all in the silicon at the same time, but 
each has only a fraction of the resources available 

• Dynamic reconfiguration: each algorithm can use the full device, but there 
is a time penalty switching from one algorithm to another 

– FP operators can be very expensive if they are not “hardwired” (in “hard 
blocks”) in the device 

– Likely need interconnection with a host CPU (PCIexpress, or via some form of 
memory sharing) 

– Expensive hardware 
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The Future 
we had everything before us, 
we had nothing before us 
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What’s next 

▶ We already have an established ecosystem around mostly Intel and 
NVidia 

– Part 1 & 2 of this talk 

▶ We know we can’t just rely on “more of the same” to get us to Exascale 
and beyond, with Moore’s law in jeopardy 

– Part 3 

▶ Many players are positioning themselves to offer an alternative to the 
current status quo 

– Part 4 

 

▶ Big cores? Small Cores? Accelerators? Or something… revolutionary? 
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Big Cores vs. Small Cores. vs. Amdahl’s Law (1) 

▶ Let’s revisit Amdahl’ Law 

– The original define the speed-up as 
1

1−𝑝 +
𝑝

𝑛

 

– Where 𝑝 is the fraction of the time in parallel mode and 𝑛 the gain from the 
parallel mode (e.g., the number of cores) 

 

▶ Assume a baseline system with a reference performance of 1 for all 𝑝 

 

▶ Intuitively, if we use slower cores but more of them… 

– We will slow down both parts 1 − 𝑝 and 𝑝/𝑛 as the cores are slower 

– But speed-up the parallel part since 𝑛 is higher – so we should be slower for 𝑝 
close to 0, and faster for 𝑝 close to 1 

 

▶ Let’s plot this for 𝑝 ∈ [0; 1] and see what kind of parallelism we need to be faster 
with smaller cores… 

– Completely abstract curve – we just slow down the sequential part and 
speed-up the parallel part and see what happens 
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Big Cores vs. Small Cores. vs. Amdahl’s Law (2) 

▶ Here we have 3 times 
as many cores, 
but twice as slow 

– Needs 75% of 
perfectly parallel 
code just to match 
the reference system 

– Maximum speed-up 
is of course 3/2 = 1.5 

 

▶ Many current “small 
cores” systems have a 
“big core” for the 
sequential part : 
typically the host 
processor for the 
accelerated system 
(GPU, etc.) 
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Dedicated hardware 

▶ Dedicated hardware has been common for a long time 

– Host Channel Adapter, Host Bus Adapter: I/O, networking, etc., … 

– Graphical Processing Units 

 

▶ But usually dedicated to “general purpose” 

– Every laptop/desktop/workstation needs a graphic display (nowadays) 

– Every server needs I/O and networking 

 

▶ Re-purposed hardware for alternative use 

– GPGPU usage for computing 

 

▶ But true, single-task dedicated hardware is coming for highly specialized tasks 

– Google Tensor Processing Unit (TPU), Nvidia Tensor Cores in V100 

– FPGA embedded in CPU 
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Non-volatile DIMMs (1) 

▶ Breaking news – Intel Optane in DIMM form factors have been officially 
announced (May 31st) for GA in 2019 

 

▶ Many technologies have been used to implement “Non-volatile RAM” 

– The most obvious are all kind of battery-protected DRAM over the decades 

– Usually as I/O accelerators, sometimes as main memory (NVDIMM-N,F,P,…) 

 

▶ The issues are price and size of the NVRAM 

– Expensive and not bigger than regular DRAM 

 

▶ The new promises of some NVDIMMs such as Intel Optane are 

– Performance similar to DRAM, so usable as main memory like DRAM 

– Non-volatile, so usable as permanent storage like Flash 

– Size larger than DRAM 

– Price per GB between Flash and DRAM 
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Non-volatile DIMMs (2) 

▶ If promises are kept, then the entire I/O stack will need a complete overall 

 

▶ Access to permanent storage via Load/Store instructions, like memory, instead 
of I/O-dedicated API and going through the kernel, device drivers, dedicated 
controller, … 

▶ A single DIMM is about 20 GB/s of raw performance … 

– About 16-18 GB/s of STREAM performance for DRAM 

▶ A single node memory bandwidth is comparable to most common building block 
for large-scale parallel filesystem 

– DDN ES14KX is 50 GB/s per base enclosure, 500 GB/s per rack 

 

▶ Even seen as regular I/O devices, NVDIMMs change the trade-offs between I/O 
access and memory usage 

 

▶ But they may completely change the landscape of HPC 
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Non-volatile DIMMs (3) 

▶ “checkpointing” can become extremely easy 

– Any code that doesn’t change data “in-place” but use double-buffering 
becomes “trivial” to checkpoint 

• Just need to know what was the current step was when it was stopped 

 

▶ Most large-scale HPC programs are of the “load data, do lots of computations of 
many kinds, write back results” types 

– Because the load data/write back results setps from/to permanent storage 
are very, very expensive 

 

▶ If data can be retained in memory easily, then big codes could be broken down 
into much smaller pieces 

– Faster, easier to write 

– More maintainable/optimizable 

– Communicates data via pointer to permanent memory 

– Dataflow becomes obvious for tuning/reorganization/checkpointing 

47 



       | 04-june-2018 | Romain Dolbeau | © Atos - Confidential  
BDS | HPC | CEPP | may not be reproduced, distributed  or used in any manner without permission  

Non-volatile DIMMs (4) 

▶ Ultimately, move from a compute-centric view to a data-centric view 

 

▶ Compute-centric 

– The data has to be moved from where it resides (permanent storage) to 
where it will be worked with (volatile memory + compute devices such as 
CPU) 

– Multiple compute devices (nodes, GPUs, …) means data moves multiple times 

 

▶ Data-centric 

– The data doesn’t need to move from permanent storage 

– Compute devices works directly on the permanent storage 

– Ultimately, compute devices can be optimized for a given type of 
computations 

• Having multiple devices hooked to the same memory but with only a 
subset in use at any given time 

• Routable memory with silicon photonics has been suggested by HP(E) for a 
while now 
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Quantum Computing 

▶ Not quite there yet, but lots of work being done 

 

▶ Completely different paradigm and algorithms 

 

▶ See the recent ORAP Forum for some excellent 
introduction to Quantum Computing, 
Quantum Algorithms, … 

– 41st Forum: Quantum Computing  

 

▶ Atos at the forefront with the QLM 
quantum emulator 

–  
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The ARM Scalable Vector Extension 
(ARM @ HotChips 2016) (1) 
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The ARM Scalable Vector Extension 
(ARM @ HotChips 2016) (2) 
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▶ 32 vector registers, same as AVX512 

▶ Variable vector register length (128-2048 bits) 

– But Fujitsu announces 512 bits for their first implementation, same as 
AVX512 

▶ 8 (directly usable) + 8 (scratch)  “predicate” registers, similar to AVX512 which 
has 8 directly usable “masking” registers 

▶ Scatter/Gather, same as AVX512 

– But with some “speculative” support for uncounted loops 

▶ … 

 

▶ So, the main differences are going to be 

1. How much computation hardware is implemented in practice 

• NEON was 128 bits like SSE, but many implementations only use a single 
64 bits pipeline (X-Gene, ThunderX) or a single 128 bits pipeline (A57) 

• Also see AMD vs. Intel, etc. 

2. The “Vector Length Agnostic” approach 

 

▶ Does VLA matter for HPC ? 
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ARM SVE:VLA, “Vector Length Agnostic” & HPC 

▶ The size of registers is not hardwired in the instruction set 

– Loops work on an implementation-dependent number of elements 

▶ Instruction set offers a lot of support 

– Address computation in abstract vector width 

– etc. 

▶ Bonanza for the embedded world: even when there is many implementations 
with many different vector width, one binary can be near-optimal everywhere ! 

 

▶ But in the HPC world, we often know what hardware we have: a single 
implementation, a single vector width, a single optimal instruction set 

– i.e. AVX2 for Haswell, SSE4.2 for Nehalem or AVX512* for KNL 

▶ If a loop is known to have a certain number of elements at compile time, it can 
be fully unrolled, loop control is removed, and merged with the enclosing loops 

– Can’t do that with variable-width registers… 

 

▶ VLA could be nice for ISV, but is probably not really useful for in-house code 
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RISC-V Vector Extension (proposal, 11/2016) 
https://riscv.org/wp-content/uploads/2016/12/Wed0930-RISC-V-Vectors-Asanovic-UC-Berkeley-
SiFive.pdf  

▶ “RISC-V (pronounced “risk-five”) is a new instruction set architecture (ISA) that 
was originally designed to support computer architecture research and 
education and is now set to become a standard open architecture for industry 
implementations under the governance of the RISC-V Foundation. The RISC-V 
ISA was originally developed in the Computer Science Division of the EECS 
Department at the University of California, Berkeley.” (from risc-v.org) 

 

▶ RISC-V is designed to be very extensible: 32, 64 or 128 bits architecture, with 
many optional extensions (atomic, floating-point, etc.) 

▶ One extension currently at the “proposal” stage is a vector extension 

 

▶ Each available vector register (up to 32) is configured with a width and type 

– Easier to mix data types 

▶ Up to 8 mask vectors 

 

▶ Nice concept, but still in its infancy 
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